CETIFICATION

SDG No:

JC20386

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

1586484

Humacao, PR

SUMMARY:

This certification report is revised to incorporate changes in SDG JC20386. The changes include adding Naphthalene and 1-Methylnaphthalene to the analytes list previously reported in sample JC20386-3. Groundwater sample (Table 1) was collected on the BMSMC facility — Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 15, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List. The results were reported under SDG No.: JC20386. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC20386-1	RA-9GWD	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20386-2	RA3(3-4)	Soil	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20386-3	RA9-GWS	Groundwater	ABN TCL special list

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 4, 2016

SGS Accutest

Report of Analysis

Page 1 of 3

Client Sample ID: Lab Sample ID:

RA9-GWS JC20386-3

Date Sampled: 05/15/16

Matrix:

AQ - Ground Water

Date Received: 05/17/16

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch**

Run #1 Run #2

DF F157218.D 1 F157246.D 20

Analyzed By 05/18/16 IJ 05/18/16 BP Prep Date 05/17/16 05/17/16

OP93986 OP93986 EF6616 EF6617

Initial Volume Final Volume

File ID

Run #1 870 ml Run #2 870 ml

1.0 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.7	0.04	ug/I	

33-31-0	2-Cinaraphenor	IND	3.1	U.94	ug/i	
59-50-7	4-Chloro-3-methyl phenol	ND	5.7	1.0	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.3	1.5	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.7	2.8	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.8	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.7	1.5	ug/l	
95-48-7	2-Methylphenol	ND	2.3	1.0	ug/l	
	3&4-Methylphenol	ND	2.3	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.7	1.1	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	5.7	1.6	ug/l	
108-95-2	Phenol	ND	2.3	0.45	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.7	1.7	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.7	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.7	1.1	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.22	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.16	ug/l	
98-86-2	Acetophenone	ND	2.3	0.24	ug/l	
120-12-7	Anthracene	ND	1.1	0.24	ug/l	
1912-24-9	Atrazine	ND	2.3	0.51	ug/l	
100-52-7	Benzaldehyde	ND	5.7	0.33	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.24	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.39	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.24	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.3	0.46	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.3	0.53	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.3	0.27	ug/l	
100 47 0	4.011	2.222	F 67	0.00	- <u>.</u>	

ND = Not detected

106-47-8

86-74-8

MDL = Method Detection Limit

ND

ND

5.7

0.39

0.26

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Chloroaniline

Carbazole

J = Indicates an estimated value

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4

Report of Analysis

Client Sample ID: RA9-GWS Lab Sample ID: JC20386-3

Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 05/15/16 Date Received: 05/17/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.3	0.75	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.3	0.32	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.3	0.29	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.3	0.46	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.3	0.42	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.63	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.55	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.3	0.58	ug/l	
123-91-1	1,4-Dioxane	968 a	23	15	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.38	ug/l	
132-64-9	Dibenzofuran	ND	5.7	0.25	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.3	0.57	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.3	0.27	ug/l	
84-66-2	Diethyl phthalate	ND	2.3	0.30	ug/l	
131-11-3	Dimethyl phthalate	ND	2.3	0.25	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.3	1.9	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.20	ug/l	
86-73-7	Fluorene	ND	1.1	0.20	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.37	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.57	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.2	ug/l	
67-72-1	Hexachloroethane	ND	2.3	0.45	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.38	ug/l	
78-59-1	Isophorone	ND	2.3	0.32	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.30	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.24	ug/l	
88-74-4	2-Nitroaniline	ND	5.7	0.32	ug/l	
99-09-2	3-Nitroaniline	ND	5.7	0.44	ug/l	
100-01-6	4-Nitroaniline	ND	5.7	0.51	ug/l	
91-20-3	Naphthalene	ND	1.1	0.27	ug/l	
98-95-3	Nitrobenzene	ND	2.3	0.74	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.3	0.55	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.7	0.26	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.20	ug/l	
129-00-0	Pyrene	ND	1.1	0.25	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.3	0.43	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: **RA9-GWS** Lab Sample ID: JC20386-3

AQ - Ground Water

05/15/16 Date Sampled: Date Received: 05/17/16 Percent Solids: n/a

Matrix: Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
367-12-4	2-Fluorophenol	48%	38%	14-88%
4165-62-2	Phenol-d5	35%	28%	10-110%
118-79-6	2,4,6-Tribromophenol	98%	87%	39-149%
4165-60-0	Nitrobenzene-d5	82%	86%	32-128%
321-60-8	2-Fluorobiphenyl	72%	85%	35-119%
1718-51-0	Terphenyl-d14	68%	75%	10-126%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

1

	ACCUTES		TEL, 732-3.		FAX: 7.		H997H	6 0	600			Side Ace				T-peu	SGE A			C	20386 Matrix Co
Anderson Mulholl	and Assochic	BMS	Rela	950	· /	155	es	51	nen	+	-	270D	28	1086	35		T				DW - Danking GW - Qround WW - Wr
2700 Wester			ATT.	Company	y learne	e (Ham	terped for	m Re	port toj			00	30 (3	BPO	2			il			SW - Surtane SO - So SL - Skut
Purchase A	Comment Laminers	Mac40	PK	Street A	dirent		_	_			-	chod	2	4							SED-Sady QI - QI LIQ - QByr
914.20		rthese Order 8		Cay			\$1	-		Zμ	-	19	P. Co	7	20						AFI - A SOL - SOE WF - Wi
117- 07(Property Present	and the same of th		Alternique	t .		_				-)	Ź	3	34						ES-Field B ES-Equation RS-Rime E
A). PRIVETA, LTRAY	W, D.LINGSTANI	T	-	_			1		-	og Plante	_	200	A	40	Z						TEI-Trip BA
Sci.	ction vsove	yada gam	Im		-		9 3	8	0 pg	Į,		N	E	di	\$2				~		LAR USE C
1 RA-96W	D	05/16/K	12.00	11	GW		3	П	2	\Box		X	X		X	1					
3 RA9 - 64	15	95 6 6	1325	TT	SÓ GW	2	H	H	2	$^{+}$	Н	X	×	\dashv	×	+		-	754	5	E86
		1111	112		V.IV.	_		Ħ	11	#	I					1					11114
			-				H	H	+	+	H	-	-		+	+			-	+	F.S.
								Ħ	#	#	Ħ				1	\pm	15		ν, .		
			-				1	H	+	11	H	-		4	-	+		\Box	\exists	in ,	
							1	H	+	IN	itu	LAS	ESS	AENT	39	4	\vdash			+	+
							H	H	H	П.						4			\exists		
Turneround Time Name	HOW TO B	ATT STATE		22.0		Dete	Deti-pr	ativ In	dometo	1 1	Ц	No.	4560	2.25 2.25		Ed Cor	ments /	Source	Instruc	horn. (20)	18 18 18 18 18 18 18 18 18 18 18 18 18 1
Tunacount Fine Business Days Stat. 18 Baselman Days Stat. 18 Baselman Days Stat. 18 Baselman Days Stat. 18 Baselman Days RUSH 2 0 0 F RUSH Days RUSH Stat. 18 Baselman Day	sal surples	y (MCS described PNP), f Data	and the second	昌	Caramorai Gertanorai FULLTI (I) IU Reduce Caramorai AU Gam e	el "A" (L el "B" (L Level 344 el el "C"	avel 1) avel 2) I j		00000	FYASP C FYASP C Halo For IDD For			480	2.2			por	F: I	metrici -MC	thy 827	rap OD
Egyppency & Rush Elizate analytic				Contains ALI Reev	cud "A" = R	ends (in	Darmer.	4.19	wast Repo	deta			s	amol	e inveni	nrv is v	enhed i	unon n	urasind	et the L	aboratory
N. Hora	1 271/10	Bantoto Custody m	I FL	/	dow noth	time u	Part of		25	_		fing co	urter de	1	L nul		Contract of the Contract of th	107:		16	
Du Jush	65/16/16	Fel	EX				2	Š	50	EX	_	7.10		- 1	17/	<i>0</i> 900	2 -	1	2	HL	
	Bain News	Boostond By.		-		-	7			-	w :	MACO MATERIAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE	-				[4	_	<u>/</u>		41

1-1-

JC20386: Chain of Custody Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

JC20386

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

1

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

This executive narrative report is revised to incorporate changes in SDG JC20386. The changes include adding Naphthalene and 1-Methylnaphthalene to the analytes list previously reported in sample JC20386-3. The sample was analyzed for the ABN TCL list following method SW846-8270D. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None

Minor findings:

None

1. Initial and continuing calibration verifications meet the method and guidance document

required performance criteria except the cases describe in the list enclosed. For analytes not meeting the continuing calibration verification criteria, results qualified as estimated (J),

(UJ) for non-detects.

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, + 40 %. No action taken.

No qualification was performed on QC samples.

20x dilutions of sample JC20386-3 used to report only 1,4-dioxane.

MSMSD % recovery outside control limits for several analytes in JC20109-2MS/MSD.
 No action taken, MS/MSD results apply to the unspiked sample. Unspiked sample was

from another project.

COMMENTS:

Results are valid and can be used for decision making purposes.

afant

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 4, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

....

Sample ID: JC20386-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/15/2016 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.7	ug/l	1	-	Ų	Yes
4-Chloro-3-methyl phenol	5.7	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.3	ug/l	1	_	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	_	U	Yes
2-Methylphenol	2.3	ug/l	1	-	U	Yes
3&4-Methylphenol	2.3	ug/l	1	-	U	Yes
2-Nitrophenol	5.7	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.6	ug/l	1	-	U	Yes
Phenol	2.3	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.7	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.7	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.7	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.3	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	•	U	Yes
Atrazine	2.3	ug/l	1	-	U	Yes
Benzaldehyde	5.7	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1.	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/i	1	-	IJ	Yes
Butyl benzyl phthalate	2.3	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.3	ug/i	1	•	U	Yes
4-Chloroaniline	5.7	ug/l	1	-	UJ	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.3	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.3	ug/l	1	-	U	Yes

bis(2-Chloroethy!)ether	2.3	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.3	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.3	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/i	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1		U	Yes
3,3'-Dichlorobenzidine	2.3	ug/i	1	-	U	Yes
1,4-Dioxane	968	ug/l	20		•	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	1.2	U	Yes
Dibenzofuran	5.7	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.3	ug/l	1	676	U	Yes
Di-n-octyl phthalate	2.3	ug/l	1	12	U	Yes
Diethyl phthalate	2.3	ug/l	1	-	U	Yes
Dimethyl phthalate	2.3	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.3	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	1727	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	บ	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	_	U	Yes
Hexachloroethane	2.3	ug/l	1	3.41	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.3	ug/l	1		U	Yes
1-Methylnaphthalene	1.1	ug/l	1	100	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	_	U	Yes
2-Nitroaniline	5.7	ug/l	1		UJ	Yes
3-Nitroaniline	5.7	ug/l	1	-	(U)	Yes
4-Nitroaniline	5.7	ug/l	1		U	Yes
Naphthalene	1.1	ug/l	1	-	U	Yes
Nitrobenzene	2.3	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.3	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.7	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.3	ug/l	1	-	U	Yes

	Date:May_15,_2016 Shipping Date:May_16,_2016
	EPA Region:2
REVIEW OF SEMIVOLATILE O	RGANIC PACKAGE
The following guidelines for evaluating volatile org validation actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous W 2015 –Revision 0. Semivolatile Data Validation. The QC on the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the laste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data included:	
Lab. Project/SDG No.:JC20386 No. of Samples:1_Full_scan	Sample matrix: _Groundwater
Trip blank No.:	
X Holding Times X GC/MS Tuning	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
Overall Comments:_ABN_TCL_list_by_method_SW846-8 _Naphthalene_and_1-Methylnaphthalene_in_sample_JC2	
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated condetect Reviewer: A Carl Condetect Date: July 4, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
- A.		
N. C.		
- 1		
<u> </u>		
	7	
2 100		
		1
		799

All criteria were met _X_	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION
All samples extracted	d and analyzed wit	hin method recommended ho	lding t	ime. Sample preservation was acceptable.

Cooler temperature (Criteria: 4 :	+2°C);	4.5°C
-----------------------------------	--------	-------

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Ac	tion
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professional judgment	
	No	> 7 days (for extraction) > 40 days (for analysis)	1	Use professional judgment
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	UJ
	Yes/No	Grossly Exceeded	J	UJ or R
No		≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
	Yes	> 14 days (for extraction) > 40 days (for analysis)	1	UJ
	Yes/No	Grossly Exceeded	J	UJ or R

All	criteria were met _X
Criteria were	not met see below

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D'
1,4-Dioxane	0.010	40.0	±40.0	± 50.0
Benzaldehyde	0.100	40.0	± 40.0	±50.0
Phenol	0.080	20.0	± 20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	±25.0
2-Chlorophenol	0.200	20.0	±20.0	±25.0
2-Methylphenol	0.010	20.0	±20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	±20.0	±25.0
4-Methylphenol	0.010	20.0	±20.0	± 25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	±20.0	±25.0
Nitrobenzene	0.090	20.0	± 20.0	±25.0
Isophorone	0.100	20.0	± 20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	± 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	±20.0	±25.0
2,4-Dichlorophenol	0.060	20.0	±20.0	±25.0
Naphthalene	0.200	20.0	±20.0	±25.0
4-Chloroaniline	0.010	40.0	± 40.0	±50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	±25.0
Caprolactam	0.010	40.0	±30.0	±50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	±20.0	±25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	±50.0
2,4,6-Trichlorophenol	0.090	20.0	±20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	±20.0	±25.0
, l'-Biphenyl	0.200	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	± 25.0
2-Nitroaniline	0.060	20.0	±25.0	± 25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	±20.0	±25.0
Acenaphthylene	0.400	20.0	±20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	±50.0
Dibenzofuran	0.300	20.0	±20.0	±25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	± 20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	±25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	±25.0
Fluorene	0.200	20.0	±20.0	±25.0
4-Nitroaniline	0.010	40.0	±40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
l-lexachlorobenzene	0.050	20.0	±20.0	±25.0
Atrazine	0.010	40.0	±25.0	±50.0
Pentachlorophenol	0.010	40.0	±40.0	±50.0
Phenanthrene	0.200	20.0	±20.0	±25.0
Anthracene	0.200	20.0	± 20.0	±25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0.500	20.0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	± 25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	±50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ^t	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	± 25.0
Chrysene	0.200	20.0	±20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	± 40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	± 25.0
Acenaphthylene	0.900	20.0	± 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	± 50.0
Phenanthrene	0.300	20.0	± 25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	±25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0		± 50.0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-d ₅	0.010	20.0	± 25.0	±25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	± 20.0	± 25.0
2-Chlorophenot-d₄	0.200	20.0	± 20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	± 20.0	± 25.0
4-Chloroaniline-d.	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-d₅	0.050	20.0	±20.0	± 25.0
2-Nitrophenol-d ₄	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-d ₃	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	±20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	± 20.0	±25.0
4-Nitrophenol-d₄	0.010	40.0	± 40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	±20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	± 30.0	± 50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	±25.0
Pyrene-d ₁₀	0.300	20.0	±25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20.0	± 25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met
Criteria were not met
and/or see belowX

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_04/04-05/16_(Scan)
Date of initial calibration verification (ICV)	
Date of continuing calibration verification	(CCV):05/17/16;_05/18/16
Date of closing CCV:	-
Instrument ID numbers:	_GCMSF
Matrix/Level:	_Aqueous/low

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMSF				
05/17/50	cc6563-50	54.3	4-chloroaniline	JC20386-1; -3
		-22.6	2-nitroaniline	1
		26.6	3-nitroaniline	
		-25.0	4-nitrophenol*	
		22.4	4-nitroaniline*	
05/17/16	cc6564-50	21.7	1,2,4,5-tetrachlorobenzene	JC20386-1; -3
05/18/16	cc6563-50	-25.2	Acetophenone	JC20386-1; -3 (20 x
		-29.9	N-nitroso-di-n-propylamine	dilution)
		33.3	4-chloroaniline*	
		-20.3	Hexachlorocyclopentadiene*	
		-26.8	2-nitroaniline	
		-22.0	4-nitrophenol*	
05/18/16	cc6564-50	23.9	Benzaldehyde*	JC20386-1; -3 (20 x
				dilution)

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except the cases describe in the list enclosed. For analytes not meeting the continuing calibration verification criteria, results qualified as estimated (J), (UJ) for non-detects.

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, +40 %. No action taken.

No qualification was performed on QC samples.

20 x dilutions of samples used to report only 1,4-dioxane; analyte not meeting the continuing calibration verification not qualified.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Ac	tion
Cineria for Opening CC v	Criteria for Clashing CCV	Detect	Non-detect
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	υJ
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification

All criteria were met	_X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipmen	t∕Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
- N. 1177			- 10	
		Mila 1940 - 8 1273 No. 1		
			40085	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	≥CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Criteria	Action		
Спета	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ	
Lower Acceptance limit $\leq \%R \leq Upper Acceptance Limit$	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-da (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)	
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether	
	Phenol	2,2'-Oxybis(1-chloropropane)	
		Bis(2-chloroethoxy)methane	
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d4 (DMC-6)	
2-Chlorophenol	2-Methylphenol	4-Chloroaniline	
	3-Methylphenol	Hexachlorocyclopentadiene	
	4-Methylphenol	Dichlorobenzidine	
	2,4-Dimethylphenol		
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)	
Acetophenone	Isophorone	2,4-Dichlorophenol	
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene	
Hexachloroethane		Hexachlorocyclopentadiene	
Nitrobenzene		4-Chloro-3-methylphenol	
2,6-Dinitrotoluene		2,4,6-Trichlorophenol	
2,4-Dinitrotoluene		2,4,5-Trichlorophenol	
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene	
		*Pentachlorophenol	
		2,3,4,6-Tetrachlorophenol	
Dimethylphthalate-d4(DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)	
Caprolactam	*Naphthalene	2-Nitroaniline	
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline	
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol	
Diethylphthalate	*Acenaphthylene	4-Nitrophenol	
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline	
Butylbenzylphthalate			
Bis(2-ethylhexyl) phthalate			
Di-n-octylphthalate			

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	1
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-ed)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20109-1	Matrix/Level:Aqueous
---------------------	----------------------

Note: MS/MSD % recoveries and RPD within laboratory control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _X
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect -	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

All criteria were metX Criteria were not met and/or see below
±0.06 RRT units of the standard point standard from the initia Yes? or No?
Actions
nerated standard [i.e., the mass or mid-point standard from initial
elative intensity greater than 10% ±20% between the standard and of 50% in the standard spectrum, ween 30-70%). Is spectrum, but not present in the er experienced in mass spectra

TARGET COMPOUND IDENTIFICATION

Criteria:

Is the Relative Retention Times (RRTs) of reported compounds within ±0.06 RRT units of the standard RRT [opening Continuing Calibration Verification (CCV) or mid-point standard from the initial calibration].

Yes? or No?

List compounds not meeting the criteria described above:

Sample ID	Compounds	Actions	
		-	

Mass spectra of the sample compound and a current laboratory-generated standard [i.e., the mass spectrum from the associated calibration standard (opening CCV or mid-point standard from initial calibration)] must match according to the following criteria:

- All ions present in the standard mass spectrum at a relative intensity greater than 10% must be present in the sample spectrum.
- b. The relative intensities of these ions must agree within ±20% between the standard and sample spectra (e.g., for an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30-70%).
- c. lons present at greater than 10% in the sample mass spectrum, but not present in the standard spectrum, must be evaluated by a reviewer experienced in mass spectral interpretation.

List compounds not meeting the criteria described above:

Sample ID	Compounds	Actions
ldentified_compoun	ds_meet_the_required_criteria	
		

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

	_	\sim
100	- 11	1 .
IST		
		U .

Sample ID	Compound	Sample ID	Compound

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".

- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action	
Cineria	Detects	Non-detects	
%Solids < 10.0%	Use professional judgment	Use professional judgment	
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment	
%Solids > 30.0%	No qualification	No qualification	

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JC20386-3	20X	1,4-Dioxane over the calibration range
· · · · · · · · · · · · · · · · · · ·		
PARTITION SHOW		
	1	
	200	

	All criteria were metN/A Criteria were not met and/or see below
FIELD DUPLICATE PRECISION	
Sample IDs:	Matrix:

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
No field/laboratory	/ duplicate	analyzed as par	t of this data package.	MS/MSI) % recoveries RPD	
No field/laboratory duplicate analyzed as part of this data package. MS/MSD % recoveries RPD used to assess precision. RPD within the required criteria < 50 % for detected target analytes.						

			All criteria were metX Criteria were not met and/or see below		
OTHE	ER ISSUES				
A.	System Performance				
List sa	amples qualified based on the deg	radation of system pe	erformance during simple analysis:		
Samp	le ID Comm	ients	Actions		
Action	:				
during		Contract Laboratory	ned that system performance has degraded Program COR any action as a result of ed the data.		
B.	Overall Assessment of Data				
List sa	amples qualified based on other is:	sues:			

Actions

Action:

Sample ID

_for_decission_purposes.__

1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.

_No_other_issues_that_required_the_need_to_qualify_the_data._Results_are_valid_and_can_be_used

- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform 2. the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results